B. MATH (HONS.) IST YEAR *MID-SEMESTER EXAM ELEMENTARY NUMBER THEORY 13TH OCTOBER, 2022 TOTAL MARKS - 30*

Instruction to students. Please present your solutions as clearly as possible. Any theorem/result that you use directly should be clearly stated/mentioned.

- (1) (i) Consider the equivalence relation ρ on Z given by aρb iff 5 divides a² b². Find the corresponding partition of Z. (3) (ii) Find all the equivalence relations on S = {1,2,3}. (3)
- (2) If p is a prime and $n \in \mathbb{Z}$ such that p divides $(4n^2 + 1)$, then show that $p \equiv 1 \pmod{4}$. Hence prove that there are infinitely many primes of the form (4k + 1). (3+3)
- (3) (i) If H is a subgroup of a group G, show that for any $g \in G$, $K = gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ is a subgroup of G. (2) (ii) If H is the only subgroup of order n in a group G, then prove that $gHg^{-1} = H$. (3)
- (4) (i) For $m \ge 2$, let $T_m = \{x^2 \pmod{m}\}$ be the set of squares modulo m. If gcd(m, n) = 1, show that $|T_{mn}| = |T_m||T_n|$. (6) *Hint*: Consider the natural map $T_{mn} \longrightarrow T_m \times T_n$. Use the Chinese Remainder Theorem.

(ii) If p is an odd prime, then show that the number of non-zero squares in \mathcal{U}_p is $\frac{p-1}{2}$ ($\mathcal{U}_p = \{[a] \in \mathbb{Z}_p \mid \gcd(a, p) = 1\}$). (3) *Hint*: \mathcal{U}_p is cyclic.

OR

- (5) (i) Show that for any positive integer N, there exists a multiple of N that consists of only 0's and 1's. (3) *Hint*: Use the Pigeonhole Principle.
 (ii) For all positive integers n, let a_n = 2^{2ⁿ} + 1. Show that gcd(a_m, a_n) = 1 ∀ m ≠ n. (3)
 (iii) Show that if a, b ∈ N with gcd(a, b) = 1, then show that there exist m, n ∈ Z such that a^m + bⁿ ≡ 1(mod ab). (3) *Hint*: Use Euler's Theorem.
- (6) Using the identity $2^{2\cdot 3^{n-1}} \equiv 1+3^n \pmod{3^{n+1}}$ (no proof needed) or otherwise, show that 2 is a primitive root of $3^n \forall n \ge 1$. (4)