B. MATH (HONS.) IST YEAR
 MID-SEMESTER EXAM
 ELEMENTARY NUMBER THEORY
 13TH OCTOBER, 2022
 TOTAL MARKS - 30

Instruction to students. Please present your solutions as clearly as possible. Any theorem/result that you use directly should be clearly stated/mentioned.
(1) (i) Consider the equivalence relation ρ on \mathbb{Z} given by $a \rho b$ iff 5 divides $a^{2}-b^{2}$. Find the corresponding partition of \mathbb{Z}.
(ii) Find all the equivalence relations on $S=\{1,2,3\}$.
(2) If p is a prime and $n \in \mathbb{Z}$ such that p divides $\left(4 n^{2}+1\right)$, then show that $p \equiv 1(\bmod 4)$. Hence prove that there are infinitely many primes of the form $(4 k+1)$.
(3) (i) If H is a subgroup of a group G, show that for any $g \in G$, $K=g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}$ is a subgroup of G.
(ii) If H is the only subgroup of order n in a group G, then prove that $g H^{-1}=H$.
(4) (i) For $m \geqslant 2$, let $T_{m}=\left\{x^{2}(\bmod m)\right\}$ be the set of squares modulo m. If $\operatorname{gcd}(m, n)=1$, show that $\left|T_{m n}\right|=\left|T_{m}\right|\left|T_{n}\right|$.
Hint: Consider the natural map $T_{m n} \longrightarrow T_{m} \times T_{n}$. Use the Chinese Remainder Theorem.
(ii) If p is an odd prime, then show that the number of non-zero squares in \mathcal{U}_{p} is $\frac{p-1}{2}\left(\mathcal{U}_{p}=\left\{[a] \in \mathbb{Z}_{p} \mid \operatorname{gcd}(a, p)=1\right\}\right)$.
Hint: \mathcal{U}_{p} is cyclic.
OR
(5) (i) Show that for any positive integer N, there exists a multiple of N that consists of only 0 's and 1's.
Hint : Use the Pigeonhole Principle.
(ii) For all positive integers n, let $a_{n}=2^{2^{n}}+1$. Show that $\operatorname{gcd}\left(a_{m}, a_{n}\right)=1 \forall m \neq n$.
(iii) Show that if $a, b \in \mathbb{N}$ with $\operatorname{gcd}(a, b)=1$, then show that there exist $m, n \in \mathbb{Z}$ such that $a^{m}+b^{n} \equiv 1(\bmod a b)$.
Hint : Use Euler's Theorem.
(6) Using the identity $2^{2.3^{n-1}} \equiv 1+3^{n}\left(\bmod 3^{n+1}\right)$ (no proof needed) or otherwise, show that 2 is a primitive root of $3^{n} \forall n \geqslant 1$. (4)

